St Mark's CE Primary School

Ramslye Road
Tunbridge Wells
TN4 8LN

Calculation Policy

Headteacher: Simon Bird
Chair of Governors: David Hill

Our Vision

At St Mark's CEP School, we ensure that our children are flourishing, building strong foundations, making excellent all-round progress and reaching their potential. We Aspire, Believe, Succeed

Created: July 2020
Updated: November 2023
Ratified: $\quad 4^{\text {th }}$ December 2023
Review date: November 2026
Website -yes

Signed Chair of Governors \qquad

Date \qquad

STATUTORY EXPECTATIONS										Rapid Recall/Mental Calculations	Non-statutory guidance
EY	Count ... from 1- $20 \ldots$ and say which no. is 1 more than a given no. Using quantities objects, + two U nos and count on to find the answer. [Expected] Estimate no. of objects; check quantities by counting up to 20. [Exceeding]	Practical or recorded using ICT. Hannah ... listed how many girls and how many boys were outside. [She] was able to say that "There are 5 girls and 4 boys. That's 9 altogether". When playing in the shop Christopher used his shopping list to add 2 amounts. He said "the beans are 5 pence and the bananas are 3 pence, altogether that is 8 pence." [EYFS Profile exemplifications, STA]			Pictures/Objects I eat 2 cakes and my friend eats 3. How many cakes did we eat altogether?			Symbolic 8 people are on the bus. 5 more get on at the next stop. How many people are on the bus now IIIIIIII IIII			Children are to record in their own ways and talk confidently about the maths they have done.
Y1	Add (and subtract) one-digit and twodigit numbers to $20(9+9,18-9)$, including zero Read/write/interpr et statements involving addition $(+)$, subtraction (-) and equals (=) signs.	Pupils use concrete objects and pictorial representations (eg place value counters, Dienes) Problems should include terms: put together, add, altogether, total, take away, distance between, more than and less than, so pupils develop concept of +/- and use operations flexibly.		Practical/record ed using ICT Pictures/Symbol ic (see above)		Visual (modelled using bead string $13+5=18$ cracocococococon-0000		Visual (efficient jumps) $13+5=18$ [jumps may be in 1s]		Represent/use number bonds (and related subtraction facts) within 20. Missing number problems (eg $16=?+9$)	Memorise/reason with bonds to $10 / 20$ in several forms (eg $9+7=16$; 16-7 $=9 ; 7=16-9$). Pupils should realise the effect of adding or subtracting zero - establishes +/- as related operations. Pupils combine and increase numbers, counting forwards and backwards.
Y2	$\begin{aligned} & \text { TO + O } \\ & \text { TO + tens } \\ & \text { TO + TO } \\ & 0+0+0 \end{aligned}$ [Show addition of two numbers can be done in any order.]	Recognise/use inverse relationship between +/- and use to check calcs and missing number problems. Pupils use concrete objects, pictorial representations and mental strategies. (eg place value counters, Dienes)	Practical/visual i $58+30=88$	ages	$7=$	ficient jumps) 82 [Also jumps can be in 10 s and 1 s]	No number line $\begin{aligned} & 35+47=82 \\ & 47+30=77 \\ & 77+3=80 \\ & 80+2=82 \end{aligned}$	Use known facts/partitioning $\begin{aligned} & 8+5+13 \\ & 8+2=10 \\ & 10+3=13 \end{aligned}$	Partitioning $\begin{array}{r} 35+47=82 \\ 40+30=70 \\ 7+5=12 \end{array}$	Recall and use addition facts to 20 fluently. Derive and use related facts up to 100 . Solve problems by applying increasing knowledge of mental methods.	Pupils extend understanding of the language of + to include sum. Practise + to 20 to derive facts such as using $3+7=$ 10 to calculate $30+70=$ $100,100-70=30$ and 70 = 100-30. Check calcs, including by adding numbers in a different order to check +. Establishes commutativity and associativity of addition.
Y3	Use formal written methods of columnar addition. $\begin{aligned} & \text { TO + TO } \\ & \text { HTO + TO } \\ & \text { HTO + HTO } \end{aligned}$	Number line $\quad 57+$	$=342$ No 57 285 33 34 34	$\begin{aligned} & +285=342 \\ & 5+50= \\ & 5+7= \end{aligned}$		ording addition in columns orts place value and ares for formal written hods with larger numbers. $35=82$	Expanded vertical	Estimate answ inverse to check $\begin{aligned} & 54+32=86 \\ & 86-32=54 \end{aligned}$	and use	HTO + O; HTO + tens HTO + hundreds Use number facts and place value to solve problems. For mental calcs with TO nos, answers could be >100.	

Y4	Use formal written methods of columnar addition. $\begin{aligned} & \text { HTO + HTO } \\ & \text { ThHTO + HTO } \\ & \text { ThHTO + ThHTO } \end{aligned}$	Estimate and use inverse operations to check answers to a calculation. Estimate, compare and calculate different measures, including money in pounds and pence.			$\begin{gathered} 789+642=1431 \\ 789 \\ 7642 \\ \hline 643 \\ \hline 141 \end{gathered}$		Solve addition two-step problems in contexts, deciding which operations and methods to use \& why. Solve simple measure and money problems involving fractions and decimals to 2dp		Pupils continue to practise both mental methods and columnar addition and subtraction with increasingly large numbers to aid fluency.	Pupils build on their understanding of place value and decimal notation to record metric measures, including money.
Y5	Add whole numbers >4 digits, including using formal written methods (columnar addition). Decimals up to 2dp $(\mathrm{eg} 72.5+45.7)$	Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy. Solve addition multi-step problems in contexts, deciding which operations and methods to use and why.		Solve problems involving number up to 3dp. Solve problems involving converting between units of time. [Measurement] Use all four operations to solve problems involving measure [eg length, mass, volume, money] using decimal notation including scaling. [Measurement]		Compact vertical $\begin{array}{l}\text { Pupils practise adding } \\ \text { decimals, including a } \\ \text { mix of whole numbers } \\ \text { and decimals, decimals }\end{array}$ with different numbers 23.70			Add numbers mentally with increasingly large numbers (eg $12462+2300=$ 14762). Pupils mentally add tenths, and one-digit whole numbers and tenths.	They extend their knowledge of fractions to thousandths and connect to decimals and measures. Pupils should go beyond the measurement and money models of decimals (eg by solving puzzles.
Y6	Solve multi-step problems in contexts, deciding which operations/method s to use and why. Decimals up to 3dp (Context: Measures)	Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.	Use knowledge of the order of operations to carry out calculations involving subtraction.	Solve problems which require answers to be rounded to specified degrees of accuracy. [Fractions] Solve problems involving the calculation and conversion of units of measure, using decimal notation to 3dp where appropriate. [Measurement]		$\begin{array}{r} \text { Compact } v \\ 3.243 \\ +\quad 18.070 \\ \hline 21.313 \\ \hline 1 \quad 1 \end{array}$	tical		Perform mental calculations, including with mixed operations and large numbers. Using the number line, pupils add positive and negative integers for measures such as temperaTOre.	Pupils develop skills of rounding/estimating to predict/check order of magniTOde of ans to decimal calcs. Includes rounding answers to a degree of accuracy \& checking reasonableness.

Y5	Use a formal written method (including long x for TO nos) TO x TO HTO x O / HTO x TO ThHTO x 0 Convert between units of measure (eg km/m; m/cm; $\mathrm{cm} / \mathrm{mm}$; kg / g; litre and ml)	$\begin{aligned} & 27 \times 34=918 \\ & \text { (estimate } 30 \times 30=900 \text {) } \end{aligned}$		$\begin{aligned} & 2741 \times 6=16446 \\ & \text { (estimate } 3000 \times 6= \\ & 2741 \quad 18000 \\ & \times 1646 \end{aligned}$	$24 \times 16=384$ (estimate $25 \times 15=$ 375)	$124 \times$ Pupils connect $26=$ multiplication by a 3224 fraction to using fractions as operators [see (fractions of), and to (division. This relates to scaling by simple fractions, including those > 1. Find fractions of numbers and quantities, writing remainders as a fraction.	Identify multiples/factors, including finding all factor pairs of a number, \& common factors of two numbers. Know/use vocabulary of prime numbers, prime factors and composite (non-prime) nos. Establish if a number up to 100 is prime; recall prime numbers to 19. x nos mentally using known facts. Multiply whole numbers and those involving decimals by 10/100/1000.	Pupils ... apply all the x tables frequently, commit them to memory and use them to make larger calculations. They understand the terms factor, multiple/prime, square/cube numbers \& use to construct equiv. statements (eg $4 \times 35=2$ $\times 2 \times 35 ; 3 \times 270=3 \times 3 \times 9$ $\times 10=9^{2} \times 10$).
Y6	Multi-digit numbers (up to 4 digits) x TO whole number using the formal method of long multiplication. Multiply one-digit numbers with up to two decimal places by whole numbers	$\begin{aligned} & 256 \times 18=4608 \\ & \text { (estimate } 250 \times 20= \\ & 5000 \text {) } \end{aligned}$	 [NB See Y5 method]	$4.7 \times 8=37.6$ (estimate $5 \times 8=$ $\begin{array}{ll} & 40) \\ \times \frac{8}{876} & {[\text { Or } 47} \\ \frac{378}{8} & \times 8, \end{array}$ then divide the solution by 10.]		Use a variety of images to support understanding of x with fractions. Use understanding of relationship between unit fractions and \div to work backwards by x a quantity that represents a unit fraction to find the whole quantity (eg if $1 / 4$ of a length is 36 cm , whole length $36 \times 4=$ 144 cm). x numbers with up to 2dp by U/TU whole nos (starting with simplest cases eg $0.4 \times 2=0.8$, and in practical contexts).	Perform mental calculations, including with mixed operations/large numbers. Identify common factors/multiples and prime numbers. Use knowledge of order of operations to carry out calculations. Use estimation to check answers to calculations and determine an appropriate degree of accuracy. Identify value of each digit to 3dp and x nos by 10/100/1000 (ans to 3 dp)	Undertake mental calcs with increasingly large numbers and more complex calculations. Continue to use all x tables to calculate statements in order to maintain their fluency. Explore the order of operations using brackets. Common factors can be related to finding equivalent fractions.

St Mark's C of E Primary School - CALCULATION POLICY 2023 - Division

Y5	Use the formal written method of short division (interpret remainders appropriately for the context). HTO $\div \mathrm{O}$ ThHTO $\div 0$ Convert between units of measure (eg km/m; $\mathrm{m} / \mathrm{cm} ; \mathrm{cm} / \mathrm{mm} ; \mathrm{kg} / \mathrm{g}$; litre and ml)	$291 \div 3=97$ (estimate: $270 \div 3=$		$\begin{aligned} & 432 \div 5=86 \mathrm{r} 2 \\ & 8^{8} \mathrm{r} 2 \\ & \begin{array}{c} 43^{3}{ }^{2} \end{array} \\ & \text { (estimate: } 400 \div 5= \end{aligned}$	$8520 \div 6=$	Pupils connect x by a fraction to using fractions as operators (fractions of), and to \div. This relates to scaling by simple fractions, incl. those > 1 . Find fractions of numbers and quantities, writing remainders as a fraction.	Identify multiples/factors, including finding all factor pairs of a number, \& common factors of two numbers. Know/use vocabulary of prime numbers, prime factors and composite (non-prime) nos. Establish if a number up to 100 is prime; recall prime numbers to 19. \div nos mentally using known facts. Divide whole numbers and those involving decimals by 10/100/1000.	Pupils ... apply all the : facts frequently, commit them to memory and use them to make larger calculations. They understand the terms factor, multiple/prime, square/cube numbers \& use to construct equivalent statements [eg $120 \div 15=$ $(30 \times 4) \div 15=2 \times 4=8]$
Y6	Divide numbers (up to 4 digits) by TO whole number using the formal method of short/long division (interpret as approp. for the context). Use written division methods in cases where the ans has up to 2dp. [Divide numbers up to 2dp by O/TO whole numbers.]	$43.4 \div 7=6.2$ (estimate $42 \div 7=6$) $\begin{aligned} & 6 \times 7=42 \\ & 0.2 \times 7=1.4 \end{aligned}$	$\begin{aligned} & 25.6 \div 7=3.2 \\ & \text { (estimate }>3,<4 \text {) } \\ & \begin{array}{l} 25.6+8 \\ \text { (astimate } 24-8=3) \\ \text { e) } 25.6 \\ \frac{-24.0}{1.6} \\ \frac{-1.8}{0} \end{array} \quad(8 \times 3.0) \\ & (8 \times 0.2) \end{aligned}$	$43.68 \div 7=6.24$ (estimate: $42 \div 7=$ 6) [Or compute 4368 7 , then divide the solution by 100.] ${ }_{7}{ }_{73.24}^{6.68}$	$432 \div 15=28.8$	$496 \div 11$ (estimate $500 \div 10=50$)	Perform mental calculations, including with mixed operations/large numbers. Identify common factors/multiples and prime numbers. Use knowledge of order of operations to carry out calculations. Use estimation to check answers to calculations and determine an appropriate degree of accuracy. Identify value of each digit to 3dp and \div nos by 10/100/1000 (ans to 3dp)	Undertake mental calcs with increasingly large numbers and more complex calculations. Continue to use all table facts to calculate statements in order to maintain their fluency. Explore the order of operations using brackets. Common factors can be related to finding equivalent fractions.

EY	No early years targets for fractions.		
Y1	Recognise, find and name a half as one of two equal parts of an object, shape or quantity Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity	Children use their knowledge of fractions of shape to find fractions of quantities. Children should be give practical apparatus to find halves and quarters of quantities within 20. Record work pictorially.	
Y2	Recognise, find, name and write fractions $1 / 2$ 1/4, , 2/4 and $3 / 4$ of a length, shape, set of objects or quantity Write simple fractions for example, of $6=3$ and recognise the equivalence of $2 / 4$ and $1 / 2$.	Children use their knowledge of unit and nonunit fractions of shapes to find fractions of quantities. They relate this to find fractions of a length e.g. $2 / 4$ of $1 \mathrm{~m}=$ Children need to relate finding a quarter to halving and halving again. Pupils should count in fractions up to 10, starting from any number and using the 1/2 and 2/4 equivalence on the number line (Non Statutory Guidance)	If I can see $1 / 4$ how many quarters can you see? If I can see $2 / 3$ how many thirds can you see? (Fraction strips)

Count up and down in

 tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one digit numbers or quantities by 10 Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominatorsRecognise and use fractions as numbers: unit fractions and non- unit fractions with small denominators. recognise and show, using diagrams, equivalent fractions with small denominators.

Recognise and show using diagrams, families of common equivalent fractions. Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by tenths.
Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including nonunit fractions where the answer is a whole number.
Add and subtract fractions with the same denominator.

Encourage children to count up and down in tenths.
$1 \div 10=1 / 10$
$2 \div 10=2 / 10$
$3 \div 10=3 / 10$
Continue the pattern. What do you notice? What's the same? What's different? Children can use fractions as an operator E.g. $1 / 4$ of $12=12 \div 4=3$

Children can relate fractions to the division of integers
$1 \div 4=1 / 4$
$4 \times 1 / 4=1$
$3 \div 4=3 / 4$
$3 / 4 \times 4=3(12 / 4$ or $3 / 4+3 / 4+3 / 4+3 / 4)$
Children need to relate and reason about why their diagrams are equivalent to a half - make connections between the numerator and the denominator E.g. $1 / 2=4 / 8$
The numerator will be half of the denominator. Children should be encouraged to make the connection between their multiplication tables and equivalents. E.g. $1 / 3=3 / 9$ because $3 \times 3=$ 9.
$5 / 7+1 / 5=6 / 7$
Children need to use practical resources/visual representations to support the comparison of fractions. E.g. $1 / 3>1 / 4$
Children should also be taught how to order fractions on a number line.

Count back in 1 and 1/10 from 101.

Children can record on a number line equivalents between $1 / 10$ and 0.1
Count on and back in tenths as decimals and relate to counting on/back in 10ths (fractions).
$25 \div 10=2.5$
2 ones and 5 tenths
$25 \div 100=0.25$
0 ones, 2 tenths and 5 hundredths or 25 hundredths
$3 / 10+4 / 10=7 / 10$
$9 / 100-7 / 100=2 / 100$
$1 \div 100=1 / 100$
$2 \div 100=2 / 100$
$3 / 7$ of $56=24$
$3 / 10$ of $120=36$
$1 / 4=12$
$3 / 4=-$
$3 / 10+4 / 10=7 / 10$
$9 / 100-7 / 100=2 / 100$

Add and subtract fractions with the same denominator and denominators that are multiples of the same number.	$3 / 4-1 / 4=$
vs	$1 / 10+2 / 5=$
Multiply proper fractions and	
mixed numbers by whole	
numbers, supported by	
materials and diagrams.	

